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Logistic regression



Intuition of logistic regression

" Hope to use the linear method to solve the classification problem

= Given a a training set:{(x(V,y("),i = 1,2, ...,n}, let y¥ € {0,1}
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= Build the connection betweenp and 8 'x = 0, + 0,x; + 6,x,
= p € (0,1) but8"x € (—0o0, +0)



Intuition of logistic regression

= Consider the odd: p/(1-p) € (0, +0)
" Consider the log odd:
" Logit(p) :=log p/(1-p) € (—o0, +0)

= Good properties:
" p->0, logit -> —o0; p->1, logit -> +o0
» Symmetry: Logit(p)=-Logit(1-p)

= Use linear model to approximate the logit: 6 "x ~ Logit(p)= log p/(1-p)
1

" p~ : = sigmoid(0 "x) = hg(x)

1+exp(-0Tx) "




Logistic Regression

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hy(x) € [0, 1]. Let's pick a smooth function:

ho(x) = (6" x)

Here, g is a link function. There are many. .. but we'll pick one!

How do we interpret hg(x)?

P(y =1 x;0) = hg(x)
Ply =0]x;0) =1— hyg(x)
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Likelihood function

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hs(x)
P(y =0 x;0) =1 — hy(x)

Then,

L(0) =P(y | X;0) = Hp | x; 6)
(i)

— H hg(x )y() 1 — hg(xD))1—Y exponents encode “if-then”

Taking logs to compute the log likelihood ¢(6) we have:

((0) = log L(6) = iy“) log hy(x\)) + (1 — y1)) log(1 — he(x1"))



Gradient ascent for log likelihood




Another view: logistic loss

" |n linear regression

* The loss function is J(hg (x(i)),y) = (he (x(i)) — y(i))z
" For the classification

= Define the loss function
logistic(t, y) = ylog(1 + exp(—t)) + (1 — y) log(1 + exp(t)) . (23)

* When y = 1, minimizing the loss getst - +oco,p — 1
* When y = 0, minimizing the loss getst - —oo,p = 0



Another view: logistic loss

= For the classification

= Define the loss function

Crogistic(t, Y) 2 ylog(1 + exp(—t)) + (1 — y) log(1 + exp(t)) . (2.3)

= The relationship between the loss and log likelihood —£(0) = fiogistic(0 ' 2, y)

Oliogistic(t,y)  —exp(—t) B 1
ot U1y exp(—t) +(1-y) 1 + exp(—t) (2:5)
=1/(1 4+ exp(—t)) — y. (2.6)
Then, using the chain rule, we have that
0 . 8€logistic (ta y) ot
aejg(e) T ot 00, (2.7)
= (y—1/(A +exp(—1))) - z; = (y — ho(x))z; , (2.8)
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Connection with the perceptron
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Biological neuron structure
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Biological neural communication
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McCulloch-Pitts neuron model [1943]

" Model the network as a graph, where the units are nodes, and
the synaptic connections are weighted edges from node i to

node j, with the weight as w; ;

" The input of the unit is:

_ Wi, . Wi
netj = _Wj,i * 0 3 Wi
l

" The output of the unit is: ot
= 0if net; < Tj; 1 otherwise

8 T] is the threshold

Slide credit: Ray Mooney
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Single-layer perception by Rosenblatt [1958]

1 Rosenblatt [1958] i#
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Training perception
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Newton’s method

Another algorithm to maximize £(60)
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Newton’s method: formulation

Returning to logistic regression with g(z) being the sigmoid function

A different algorithm for maximizing the log likelihood £(6)
To maximize £(8), hope to find 8 such that V£(68) = 0

New formulation

Given f : R = R find 0 s.t. f(8) =0
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Newton’s method

Suppose 0,, — 0,,,1 =

f(6n)—0 /
S = 1 (6,)

f(6n)
HTl o 9n+1 — A= fl (Hn)

So the updaterulein 1d 6 :=0 —

To maximizing the log likelihood?

f(0)
1'(6)

0:=40
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Generalization to the multidimensional setting

[ |
to a vector-valued function which has:

g(t+1) — p(t) _ (H(Q(t)))_l Vol(6M).

in which H;;(0) = %89/(9).

For the likelihood, i.e., f(0) = Vy£(0) we need to generalize

s 9% 9% T
067 96,00, 96,00,
%t a_2g d*¢
96,00, a0 96,060

Hy(0) = V*(0) = 2 T e RP

d*4 9% 9L
| 96,00, 06,00, 06°
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Properties of Newton’s method

= Convergence rate?
" Use the Hessian information to determine step size, more adaptive

= May converge very fast

" Computational cost?
= Computing Hessian requires 0(d?)
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Multi-class classification
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Problem formulation

m Suppose we want to choose among k discrete values, e.g.,
{'Cat’, 'Dog’, 'Car’,'Bus’'} so k = 4.

s We encode with one-hot vectors i.e. y € {0,1}* and ijzl V=1L

A ) (0
o/ o/ Lo/ \y

‘Cat’ 'Dog’ ‘Car’ '‘Bus’

* |n this case, p(y|x; ) is a distribution over k discrete outcomes



Objective

ntroduce 91Tx, Hsz, .. H,Ix to represent the corresponding
orobabilities

Hope:
= Each probability € [0,1]
= The sum over all probabilities is 1

25



Softmax function

® Define the softmax function softmax : R* — R* as

softmax(ty,...,t) =

exp(tl) -

22?21 exp(t;)

exp.(t k)

" Let (t1,...,tx) = (0{z,---,0, x)

Ply=1|z0)

Ply=k|x;0)

= softmax(ty, - - ,tx) =

. Z?:l exp(t;) |

exp(6{ x)
Z";z 1 eXp(O;r .’L')

exp(6, )

» 2‘1;21 exp(Q;rx) a

(2.9)
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Quiz
" Does k =2 case agree with logistic regression?

-
e9j X

Ply = jlx8)=
(y ./‘ ) 8017-X—|—692TX
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How to optimize?

" Compute the negative log likelihood function

—logp(y | z,0) = —log ( keXP(ty) ) = — g (Z:Xp(ﬁy )

Zj:l exp(t;) j=1 eXp(QjT:c)

" Define the cross-entropy loss function

leo((t1, ..., tk),y) = —log ( kexp(ty) )

ijl exp(t;)

" OQver n training examples?

00) =) Lee((6121,..., 0, 2),y)
i=1

|
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Gradient descent to minimize the loss

8£cea(tiy y) _ ¢z _ 1{y — i}, (2.16)

where 1{-} is the indicator function, that is, 1{y = i} = 1 if y = 4, and
1{y = i} = 0 if y # 4. Alternatively, in vectorized notations, we have the
following form which will be useful for Chapter

0lee(t, y)
ot

where e, € R¥ is the s-th natural basis vector (where the s-th entry is 1 and
all other entries are zeros.) Using Chain rule, we have that

0o ((0] z,...,00 ),y ol(t,y) Ot ,
GrzBeD)y) O O _ (4 1fy=ip)-a. (219

=¢— €y (217)

Therefore, the gradient of the loss with respect to the part of parameter 6; is

T = 60— 1y =) e, (219)

j=1
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Summary

= Two-class classfication

= |Logistic regression
= |ntuition, optimization
" Digression: the perceptron learning algorithm

= Newton’s method

= Use second-order information

= Multi-class classification

= Softmax function
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